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(B) leading to the same value of the absolute scale obtained 
in that work and is also identical with the sample on which 
the relative measurements were carried out. It is worth 
noting that the pressure values given in that work were the 
values of total forces on a sample of area of 2 cmZ. The 
corrected values, f~s, are given in Table 1. As the result of 
the correction, the small amount of reduction which was 
found in the previous study does not seem to exist, or at 
least it is comparable to the experimental errors. 

A careful treatment of the effects of porosity and surface 
roughness is important in order to give more reliability to 
the experimental values of X-ray structure factors obtained 

with powders. An effort to correct for these effects by a 
parameter determined by measurements of fluorescent inten- 
sity from copper powder samples of different particle size 
is in progress. 
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One definition employed by crystallographers in fixing the centroid of an X-ray diffraction profile has pre- 
viously involved in its application the use of successive approximations. A simplified method, sufficiently 
accurate to eliminate such iterations in most cases, is given, based on the Thomsen & Yap analysis of stati- 
stical errors in centroid, median, and peak. Certain differences between the above error analysis and Wilson's 
recent work are discussed briefly. 

Crystallographers have frequently employed the centroid 
of experimentally observed diffraction profiles in the deter- 
mination of crystal grating constants (Pike & Wilson, 1959; 
Taylor, Mack & Parrish, 1964). From a mathematical 
standpoint it would be desirable to deal with the centroid 
of the entire profile, i.e. with integration limits + oo; in 
this case, the convolution theorem for the addition of cen- 
troids would be rigorously applicable. In practice, of course, 
the use of some finite truncation limits is unavoidable. 

Taylor, Mack & Parrish considered several possible con- 
ventions for defining such limits and recommended the fol- 
lowing: An angular range which is large compared with 
the width of the aberration functions is selected and located 
symmetrically about the centroid of the observed curve to 
establish the truncation range. Since this centroid position 
is obviously not known a priori, they suggest the use of 
successive approximations. 

In the present note we describe a simplified procedure 
which usually eliminates the need for any iterations. We 
have recently completed a comprehensive analysis of sta- 
tistical errors in various possible wavelength criteria - cen- 
troid, median, and peak (Thomsen, 1965; Wilson, Thom- 
sen, & Yap, 1965; Thomsen & Yap, 1968). The simplified 
technique for locating the centroid constituted a relatively 
minor part of the rather lengthy Thomsen & Yap paper. 
Hence it seems useful to give a slightly modified derivation 
here. 

Let us denote the abscissa variable (wavelength, energy, 
or angle) by v and the ordinate (counts or intensity) by 
f(v). We will take the initial guess (zeroth approximation) 
for the centroid of the truncated profile as the origin of  v. 
Let the result of the first iteration (first approximation) be 
cl and the true centroid position be c. The specified trunca- 
tion range will be taken as 2 V; initially this range is simply 
-V<_v<_ V. Thus the first approximation cl is given by 

• ( 1 )  

The true centroid is defined in terms of the range 
c -  V< v _< c+ V, which involves the as yet unknown posi- 
tion c. The integrand in the denominator of equation (1) 
is always positive and is relatively small for large v; hence 
the denominator will be only slightly affected if the range 
of integration is translated by the small displacement c. On 
the other hand, the numerator will be quite sensitive to 
such a shift; in fact it will differ from zero only because 
c #0, i.e. only because of the inaccuracy of the initial guess. 
Thus, with a slight approximation, we may rewrite equa- 
tion (1) as 

Ii+%, 
d c - - V  

- . . . . . . . . . . . . . . .  (2) 

The first term on the right hand side is, by definition, 
the true eentroid e. Thus, with an obvious additional ap- 
proximation, we may rewrite the above expression as 

where 

cl ~- c -  rc , (3) 

v[f(v) + f ( -  v)] 
. . . . . . . . .  (4) 
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This parameter r contains only experimentally determined 
quantities. Physically it represents the ratio of the average 
heights at the end points + V to the average height over the 
entire range - V < v <  V. Hence it will obviously be less 
than unity for all cases of interest. 

Equation (4) now yields immediately 

C = Cl/(1 -- r) .  (5) 

This expression gives the true centroid c in terms of ex- 
perimentally known quantities without the need of succes- 
sive approximations. If data are recorded at reasonably 
closely spaced abscissa intervals, the integrals in equations 
(1) and (4) can, of course be replaced by the corresponding 
sums. Furthermore the zeroth approximation and the range 
may usually be chosen so as to eliminate the use of fractional 
abscissa intervals at the end points. 

While the above derivation involves certain approxima- 
tions, the resulting errors will normally be small. It can be 
shown that the fractional error in c will usually be of the 
order of (c/w)2+ Isc/wl, where w is the full width of the 
profile at half intensity and s is the index of asymmetry as 
defined by Sauder (1966). In our error calculations we em- 
ployed the model given by equation (II. 9) of Thomsen & 
Yap (1968), which we termed an 'asymmetric witch'. For 
this model, with s= 0.25, c= 0.05 w, and a total truncation 
range of only 2w, we compute a fractional error of 0.5 % 
in c. For wider truncation ranges the error becomes still 
smaller. 

Very recently Wilson (1967) published a paper which 
also includes a treatment of the statistical errors in the cen- 
troid, median, and peak. Aside from superficial aspects, 
his results for centroid and median differ from ours in one 
significant respect, i.e. he ignores any statistical error in the 
determination of the truncation limits. Clearly, if we use 
the centroid definition recommended by Taylor, Mack & 
Parrish, the random intensity fluctuations responsible for 
the statistical error in cl also produce an error in the trun- 
cation limits. For this case, it can be shown (Thomsen & 

Yap, 1968) that the net effect is to multiply Wilson's error 
by a factor ( 1 - r ) - l .  Another interesting consequence of 
employing the Taylor, Mack & Parrish definition is to 
eliminate any error due to uncertainty in the correction 
for a constant background. 

Admittedly the factor ( 1 - r ) - I  is quite close to unity 
(~  1"05) for the large truncation ranges generally used by 
crystallographers. However, if we consider a Lorentzian 
profile with a truncation range of twice the full width, this 
factor increases the error by more than 50 %. Other meth- 
ods of truncation also involve additional statistical error, 
although the analysis may be less straightforward. Similar 
considerations apply to the median. 

It should also be noted that Wilson's equation (27) (for 
the standard deviation of the peak as determined by a 
parabolic fit) is dimensionally correct only if the quantity 
I in his equation (26) represents counts rather than intensity 
(counts per unit time). With this modification it becomes 
a special case of our result for a polynomial fit. Wilson 
(1965) had previously derived this equation with all terms 
properly defined, but neglected to transform the notation 
when quoting it in his recent paper. 
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Notes and News 

Announcements and other items of  crystallographic interest will be published under this heading at the discretion of  the Editorial 
Board. The notes (in duplicate) should be sent to the General Secretary of  the International Union of  Crystallography 
(G.Boom, Laboratorium voor Fysische Metaalkunde der Rijksuniversiteit, Universiteitscomplex Paddepoel, Groningen, 
The Netherlands). Publication of an item in a particular issue cannot be guaranteed unless the draft is received 8 weeks 
before the date of publication. 

International Union of Crystallography 
Structure Reports 

The Executive Committee has pleasure in announcing that 
Volume 22 of Structure Reports, covering the literature for 
1958, was published in August. Volume 23 (1959) had been 
published earlier. Volumes 24 (1960), 26 (1961), 27 (1962) 
and Volume 25 (the cumulative index for 1951-60) are now 
with the press and will be ready in 1968-69. 

Volumes 22, 24 and 26 each consist of 800-900 pages. 
Their prices are (Netherlands Guilders)f140 (or at present 
rates of exchange $39 or £16.8s.). The price of Volume 25 
(Index) will be f90 ($25.00 or £10.10s.). 

Price reductions 
A 15% discount will be given to all subscribers who place 

a standing order from Volume 22 onwards and who under- 
take to purchase at least 5 new volumes as they appear. 
This discount is being given to subscribers already on the 
standing order list, and it is also available for orders of 
five or more existing volumes. 

Ten-year sets 
Volumes 15-24 span the important 10-year period 

1951-60 and may be referenced from the cumulative index 
Volume 25. The list price of these eleven volumes is f1265. 
The complete set may be obtained at the specially reduced 
price off lO00 ($280 or £117). Volumes 15-23 will be de- 


